Improving GPU Utilization in ML Workloads
Through Finer-Grained Synchronization

Reese Kuper
University of Wisconsin-Madison
rkuper@wisc.edu

Abstract

In recent years, machine learning has transformed society,
including significant improvements in accuracy on a variety
of tasks including image/text classification and video recog-
nition. Moreover, on-going efforts are applying machine
learning to new applications domains including autonomous
agents, natural language processing, and speech translation.
Although more specialized options also exist, general pur-
pose GPUs are widely used in both industry and academia for
machine learning, especially for machine learning training,.
However, unlike convolutional neural networks, current and
next generation algorithms like recurrent neural networks,
and Transformer (or attention) networks typically use nar-
rower kernels and have numerous inter-kernel dependencies
that limit parallelism. Thus, these algorithms often do not
fully utilize the GPU. To overcome these inefficiencies, we
propose to rethink the conservative kernel-level synchro-
nization for these workloads. In particular, we build on the
insight that often in these workloads, computation in sub-
sequent kernels is only dependent on a small subset of the
computation from prior kernels. By dynamically uncover-
ing these dependencies, we can modify the GPU to issue
work as soon as the work it depends on completes, and avoid
unnecessarily waiting until the entire kernel finishes. This
increases overall utilization of the GPUs while reducing idle
time, thus improving performance and energy efficiency.

1 Introduction

In recent years, machine learning (ML) has emerged as
an important application domain, driving the requirements
for future systems. General-purpose GPUs (GPGPUs) in par-
ticular have emerged as the accelerator of choice for ML,
especially for the time- and computationally-intense ML
training phase, because GPGPUs offer a strong combination
of programmability, performance, and energy efficiency. In
recent years, GPGPUs have been especially useful for convo-
lutional neural networks (CNNs). CNNs are often compute
bound and utilize large, dense matrices, making them an
ideal fit that fully utilize the GPU. Accordingly, companies
such as NVIDIA have devoted significant resources to de-
signing both highly tuned software (e.g., cuDNN) and adding
new hardware features (e.g., Tensor Cores) that accelerate
commonly used ML operations.

YArch °21, Feb 2021, USA

Suchita Pati
University of Wisconsin-Madison
spati@cs.wisc.edu

Matthew D. Sinclair
University of Wisconsin-Madison
sinclair@cs.wisc.edu

10

ALU Utilization

9 a 9 o
hb"’ m@b‘/ hfob‘/ h’b"'/ W'b"" N
q’ 4 (L e ‘L s q’ e) e s
> > e > \o? &7
o 7 > o
& \!}6‘ & & 9 N

& oF O(V &7 ‘(\“ 5

& & & & é\{\/

Figure 1. ALU utilization on an NVIDIA Volta Titan V. 1-3 is
"low’, 4-6 is 'medium’, and 7-10 is high’ utilization. The runs
are labeled as [hidden-size_batch-size_timestep_type] for
RNNs and [width_height_channel_batch_filters] for CNN.

However, current and next generation ML workloads like
recurrent neural networks (RNNs), and Transformer net-
works [1] (based on attention networks [2]) have different
characteristics from CNNs. Unlike CNNss, these algorithms
are often memory bound and have heterogeneous, input-
dependent computation, often based on a job’s sequence
length, that does not fully utilize the GPU, as shown in Fig-
ure 1. Figure 1 shows that most kernels (including GEMMs,
element-wise add and activation kernels) invoked during
RNN (vanilla, LSTM and GRU) training for popular networks
such as Google’s Neural Machine Translation (GNMT) [3]
and DeepSpeech? [4] have very poor ALU utilization; only a
few kernels achieve the GPU’s peak utilization.

Normally, modern GPUs use a bulk-synchronous program-
ming model for these workloads, dividing the computation
into a number of layers (each of which contains one or more
GPU kernels). This makes the algorithms easy to understand,
design, and, often, easier to map to high-level frameworks
like PyTorch and Tensorflow). Moreover, techniques such
as fusion can reduce the number of layers and increase ef-
ficiency in some situations (at the cost of increased intra-
kernel synchronization) [5-14].

Nevertheless, the increasing depth of ML workloads create
distinct phases. At the end of each phase, processing units are
often idle while waiting for other calculations to complete.

YArch ’21, Feb 2021, USA

Kernel 1

~
[TB1][B 2 J[B3 J [Kemel2 M Kol s][s }
Q :)

Kernel 1 Kernel 1 Kernel 1 Kernel 2
TB1 B2 TB3 B2
Kernel 2\&

TBlJ[TBZ][TBS

T)

Kernel S\J B

TBl][TBZ][TB3]

Kernel 2
B3
Kernel 3
B3

(b) Proposed scheme

;
|

(a) Current kernel barriers
Figure 2. Independent TBs (in green) could execute once
TBs they depend on in prior kernels complete, but current
GPUs enforce kernel barriers. Our proposal uses dataflow
information to schedule TBs once dependencies are met.

Moreover, expensive, inefficient global synchronization (e.g.,
returning to the host CPU) is required to ensure that all
computations in the phase are complete before the next phase
can begin. In CNNss, this often worked well because most or
all computations in subsequent kernels depended on all of
the computations in the previous layer. However, this is not
the case for RNNs, and Transformers.

In order to analyze dependencies in ML workloads, we
developed a tool which outputs a TB granularity dependency
graph. Figure 2a shows a snippet (for brevity) highlighting
these TB dependencies for three kernels in a GRU layer. In
this figure, TB 1 and TB 2 of both kernel 2 and kernel 3 are
independent of their respective preceding kernels. However,
they cannot immediately execute; instead, they must wait
for all TBs in the previous kernel to complete. Therefore, we
propose to exploit dynamic dataflow ideas, in combination
with recent advances in GPU stream schedulers [15], to avoid
unnecessary, overly conservative global synchronization be-
tween kernels. By extending the stream scheduler to utilize
these dependencies, we can schedule work across kernels as
soon as it is ready, increasing utilization, reducing idle time,
and improving performance and energy efficiency.

2 Proposal

Since TBs often depend on only a small subset of TBs in
prior kernels, we propose to extend the stream scheduler
to utilize a dynamic, per TB dependence graph instead of a
per kernel dependence graph as in modern GPUs [15]. Thus,
our stream scheduler effectively combines all kernels (and
streams) from a given job into a single large pool, and uses
the dependence information to determine when it is safe to
schedule a given TB. This requires two major changes:
Finding and storing inter-TB dependencies: Initially, we
will statically profile each application to extract its inter-TB
dependencies. Here, we exploit the insight that ML training
is repetitive (both in terms of layers as well as iterations),
usually executing similar kernels in a loop. Thus, we can
leverage this property to extract dependency information in
the first invocation of a kernel and use it in their subsequent
occurrences. However, this means that the initial launch
of each kernel will still use the bulk-synchronous barriers.

Reese Kuper, Suchita Pati, and Matthew D. Sinclair

Thus, we will further extend this approach to dynamically
identify dependencies through hardware-software co-design.
We will use a combination of software hints (addresses or
address range) and a Bloom filter (to be stored in the stream
scheduler’s memory) that tracks addresses being accessed by
executing kernels. When a new kernel is added to a stream
(or inspected for the first time by the stream scheduler), we
will search the Bloom filter using the hints to see which, if
any TBs in prior kernels are accessing the addresses, and use
this information to construct the dependence graph.
Extending stream scheduler: We will modify the GPU
stream scheduler to utilize the inter-TB dependence infor-
mation and launch TBs as soon as their dependencies from
prior kernels have completed. As part of this change, we will
also augment the stream scheduler to determine an efficient
priority when deciding between TBs from older kernels and
newer kernels. This enables concurrent execution of TBs
across multiple (formerly consecutive) kernels and reduces
the overhead of going to the host.

3 Evaluation

To evaluate our proposed design, we will use two compo-
nents. First, we will extend our tool that extracts directed de-
pendency graphs to analytically model and provide an upper
bound on the potential gains from overlapping independent
computations for a GPU of given size. Next, we will extend
Accel-Sim [16] to incorporate our dependence information
into its stream scheduler, and modify the stream scheduler to
schedule TBs as soon as its dependencies are complete and
the GPU has available resources. We will initially use static
dependence graphs generated from prior runs to test our
stream scheduler changes, before moving to dynamic depen-
dence graphs. To test our implementation, we will initially
use microbenchmarks like DeepBench [17, 18], then progress
to larger, more representative benchmarks like BERT [19],
DeepSpeech2, GNMT, GPT-2 [20], and GPT-3 [21].

4 Related Work

Our proposed work builds on and leverages prior GPU
work on dependence graphs and kernel fusion. In particular,
Wireframe [22] and Puthoor et al. [15] propose significant
advances in stream scheduling (or command processors)
that schedule TBs based on dataflow graphs. The key differ-
ence between this work and ours is that Wireframe focuses
specifically on intra-kernel dependencies using a hardware
dependence graph, which ignores more challenging, mem-
ory intensive, and difficult task of identifying and scheduling
independent work across kernels. Puthoor, et al. also utilize
dependence graphs, but focus on scheduling independent
work from different streams (command queues), which can
be identified statically by the programmer.

Similarly, prior work intelligently fuses kernels together [6,
7, 23]. This removes the overhead of returning to the CPU
between kernels and improves occupancy and performance,
but adds expensive intra-kernel barriers. In contrast, we seek

to provide a middle point between this work and work that
exploits dependence graphs: the benefits of kernel fusion,
without expensive intra-kernel barriers, and exploiting de-
pendence graph information across kernels, instead of only
within kernels. Nevertheless, since our work builds on these
works, we will compare our approach to them.

References

(1]

(2]

(4]

(5]

(6]

(8]

(9]

(10]

(11]

(12]

(13]

M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catan-
zaro, “Megatron-LM: Training Multi-Billion Parameter Language Mod-
els Using Model Parallelism,” 2019.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention Is All You Need,” in Proceedings
of the 31st International Conference on Neural Information Processing
Systems, NeurIPS, 2017.

Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah, M. John-
son, X. Liu, L. Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens,
G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J. Riesa, A. Rudnick,
O. Vinyals, G. Corrado, M. Hughes, and J. Dean, “Google’s Neural
Machine Translation System: Bridging the Gap between Human and
Machine Translation,” CoRR, vol. abs/1609.08144, 2016.

D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper, B. Catanzaro,
J. Chen, M. Chrzanowski, A. Coates, G. Diamos, E. Elsen, J. Engel,
L. Fan, C. Fougner, A. Y. Hannun, B. Jun, T. Han, P. LeGresley, X. Li,
L. Lin, S. Narang, A. Y. Ng, S. Ozair, R. Prenger, S. Qian, J. Raiman,
S. Satheesh, D. Seetapun, S. Sengupta, C. Wang, Y. Wang, Z. Wang,
B. Xiao, Y. Xie, D. Yogatama, J. Zhan, and Z. Zhu, “Deep Speech 2 : End-
to-End Speech Recognition in English and Mandarin,” in Proceedings of
the 33nd International Conference on Machine Learning, ICML, pp. 173—
182, 2016.

J. Appleyard, T. Kocisky, and P. Blunsom, “Optimizing Performance
of Recurrent Neural Networks on GPUs,” CoRR, vol. abs/1604.01946,
2016.

G. Diamos, S. Sengupta, B. Catanzaro, M. Chrzanowski, A. Coates,
E. Elsen, J. Engel, A. Y. Hannun, and S. Satheesh, “Persistent RNNs:
Stashing Recurrent Weights On-Chip,” in Proceedings of the 33nd In-
ternational Conference on Machine Learning, ICML, pp. 2024-2033,
2016.

I. El Hajj, J. Gomez-Luna, C. Li, L.-W. Chang, D. Milojicic, and W.-m.
Hwu, “KLAP: Kernel Launch Aggregation and Promotion for Opti-
mizing Dynamic Parallelism,” in 49th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO, pp. 1-12, 2016.

J. Filipovi¢, M. Madzin, J. Fousek, and L. Matyska, “Optimizing CUDA
Code by Kernel Fusion: Application on BLAS,” The Journal of Super-
computing, vol. 71, p. 3934-3957, Oct. 2015.

J. Fousek, J. Filipovi¢, and M. Madzin, “Automatic fusions of cuda-
gpu kernels for parallel map,” SIGARCH Comput. Archit. News, vol. 39,
p. 98-99, Dec. 2011.

F. Khorasani, H. A. Esfeden, N. Abu-Ghazaleh, and V. Sarkar, “In-
Register Parameter Caching for Dynamic Neural Nets with Virtual
Persistent Processor Specialization,” in Proceedings of 51st IEEE/ACM
International Symposium on Microarchitecture, MICRO, 2018.

A.Li, B. Zheng, G. Pekhimenko, and F. Long, “Automatic Horizontal
Fusion for GPU Kernels,” 2020.

M. Sivathanu, T. Chugh, S. S. Singapuram, and L. Zhou, “Astra: Ex-
ploiting Predictability to Optimize Deep Learning,” in Proceedings of
the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS ’19, (New
York, NY, USA), p. 909-923, Association for Computing Machinery,
2019.

M. Springer, P. Wauligmann, and H. Masuhara, “Modular Array-Based
GPU Computing in a Dynamically-Typed Language,” in Proceedings of
the 4th ACM SIGPLAN International Workshop on Libraries, Languages,

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

YArch ’21, Feb 2021, USA

and Compilers for Array Programming, ARRAY 2017, (New York, NY,
USA), p. 48-55, Association for Computing Machinery, 2017.

G. Wang, Y. Lin, and W. Yi, “Kernel Fusion: An Effective Method for
Better Power Efficiency on Multithreaded GPU,” in Proceedings of the
2010 IEEE/ACM Int’l Conference on Green Computing and Communi-
cations & Int’l Conference on Cyber, Physical and Social Computing,
GREENCOM-CPSCOM ’10, (USA), p. 344-350, IEEE Computer Society,
2010.

S. Puthoor, X. Tang, J. Gross, and B. M. Beckmann, “Oversubscribed
command queues in gpus,” in Proceedings of the 11th Workshop on
General Purpose GPUs, GPGPU-11, (New York, NY, USA), pp. 50-60,
ACM, 2018.

M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers, “Accel-sim: An
extensible simulation framework for validated gpu modeling,” in 2020
ACM/IEEE 47th Annual International Symposium on Computer Archi-
tecture (ISCA), pp. 473-486, 2020.
S. Narang, “DeepBench”
DeepBench, 2016.

S. Narang and G. Diamos, “An update to DeepBench with a focus on
deep learning inference”” https://svail.github.io/DeepBench-update/,
2017.

J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of
deep bidirectional transformers for language understanding,” CoRR,
vol. abs/1810.04805, 2018.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and 1. Sutskever,
“Language models are unsupervised multitask learners,” OpenAI Blog,
vol. 1, no. 8, 2019.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, “Language Models are Few-Shot Learners,” 2020.

A. A. Abdolrashidi, D. Tripathy, M. E. Belviranli, L. N. Bhuyan,
and D. Wong, “Wireframe: Supporting Data-Dependent Parallelism
through Dependency Graph Execution in GPUs,” in Proceedings of
the 50th Annual IEEE/ACM International Symposium on Microarchitec-
ture, MICRO-50 ’17, (New York, NY, USA), p. 600-611, Association for
Computing Machinery, 2017.

F. Zhu, J. Pool, M. Andersch, J. Appleyard, and F. Xie, “Sparse persistent
rnns: Squeezing large recurrent networks on-chip,” in Proceedings of
6th International Conference on Learning Representations, ICLR, 2018.

https://github.com/baidu-research/

https://github.com/baidu-research/DeepBench
https://github.com/baidu-research/DeepBench
https://svail.github.io/DeepBench-update/

	Abstract
	1 Introduction
	2 Proposal
	3 Evaluation
	4 Related Work
	References

